

Machine Learning for Observing the oceans with Remote Sensing

Dr. Ing. Panagiotis Agrafiotis

Postdoctoral Researcher - Marie Skłodowska-Curie Fellow agrafiotis@tu-berlin.de https://rsim.berlin/ https://www.magicbathy.eu/ Course: Machine Learning for Remote Sensing Data Analysis

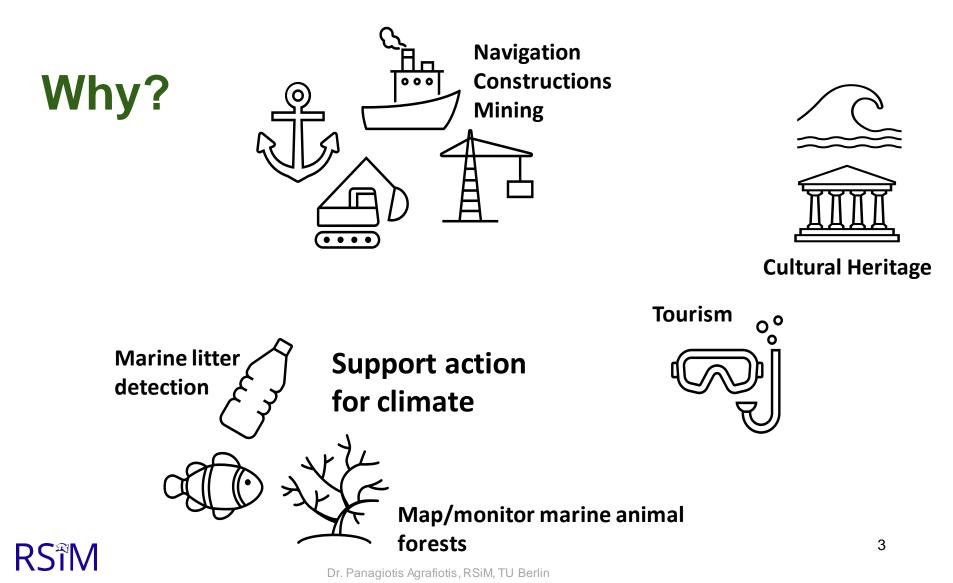
Faculty IV – Electrical Engineering and Computer Science TU Berlin

Winter Semester 2023-2024

02.11.2023

3 km

RS platforms can "see the sea" in ways that are otherwise impossible



What platforms and data?

Satellites, occupied airborne or unoccupied airborne (drones)

- RGB + Multispectral imagery
- LiDAR (Light Detection And Ranging)
- Synthetic-aperture radar (SAR) altimeters
- Other special payload instruments (radiometers etc.)

What platforms and data?

Satellites, occupied airborne or unoccupied airborne (drones)

- RGB + Multispectral imagery
- LiDAR (Light Detection And Ranging)
- Synthetic-aperture radar (SAR) altimeters
- Other special payload instruments (radiometers etc.)

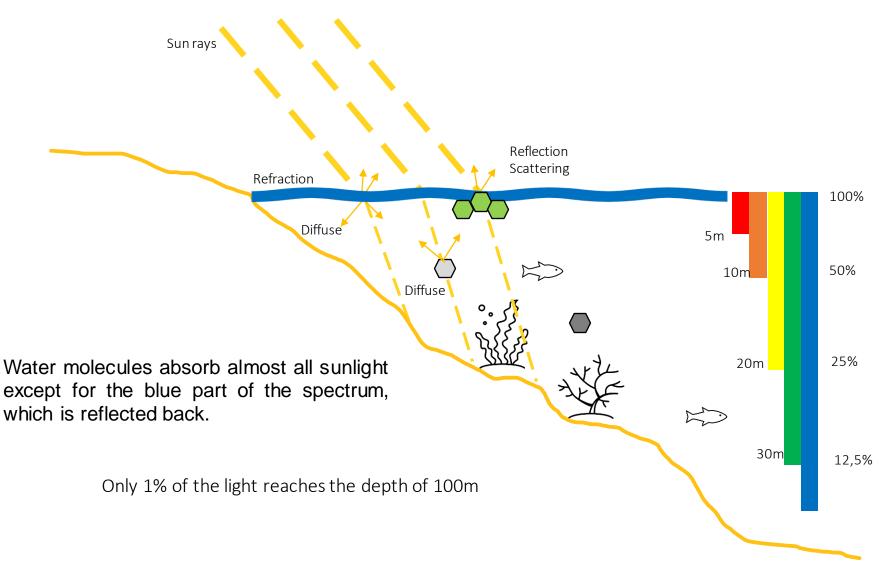
How can we get the required information?

- Exploit the RADIOMETRIC information of one or more scenes
- Exploit the GEOMETRIC information derived by two or more scenes (stereo etc.)

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/ tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Light absorption in water column



Light absorption in water column

Optically clear waters

Bottom is visible till the depth of 20-25m

Image source: Copernicus, https://dataspace.copernicus.eu/

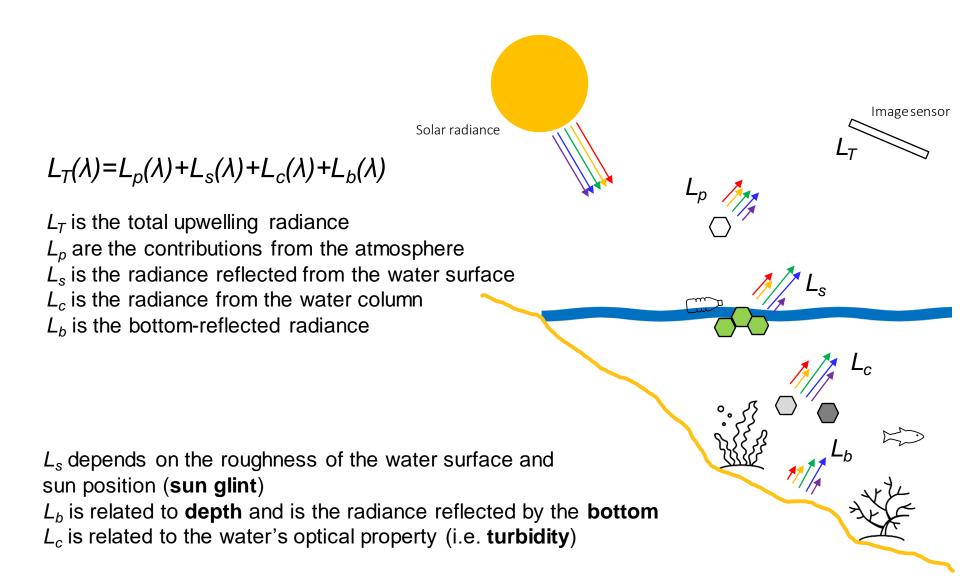
Light absorption in water column

Optically clear waters but with higher chlorophyll etc. concentration and darker bottom

Bottom is visible till the depth of 4-5m

Image source: Copernicus, https://dataspace.copernicus.eu/

Basics of Spectral-based methods



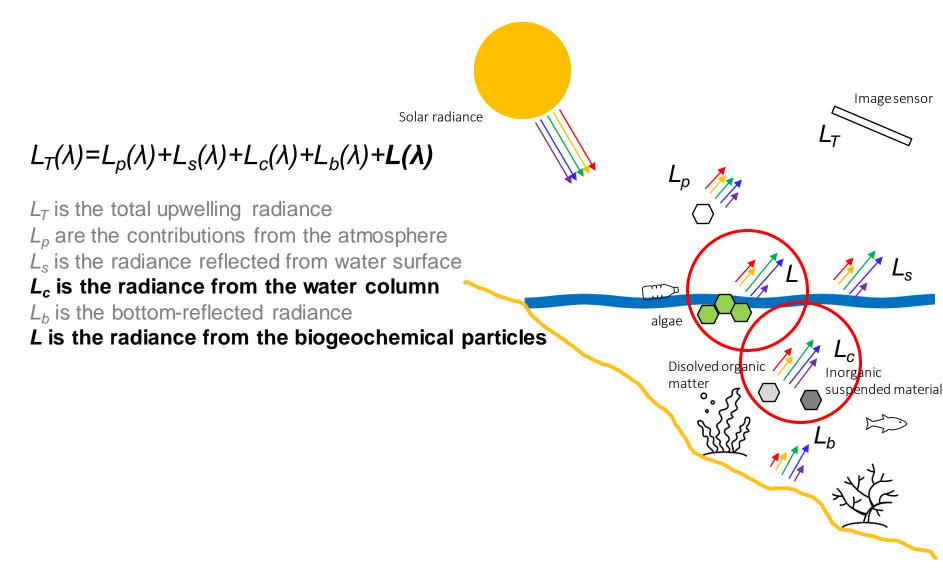
ML applications using radiometric information

- Biogeochemical indices (i.e., chlorophyll)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

ML applications using radiometric information

- Biogeochemical indices (i.e., chlorophyll)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Biogeochemical indices



Suspended matter (turbidity)

Chlorophyll (algae)

Get biogeochemical indices

How?

Empirical algorithms

Statistically relate measurements of i.e. chlorophyll (CHL) or suspended matter and reflectance through regression, polynomial expressions or **Artificial Neural Networks**

Widely used bands:

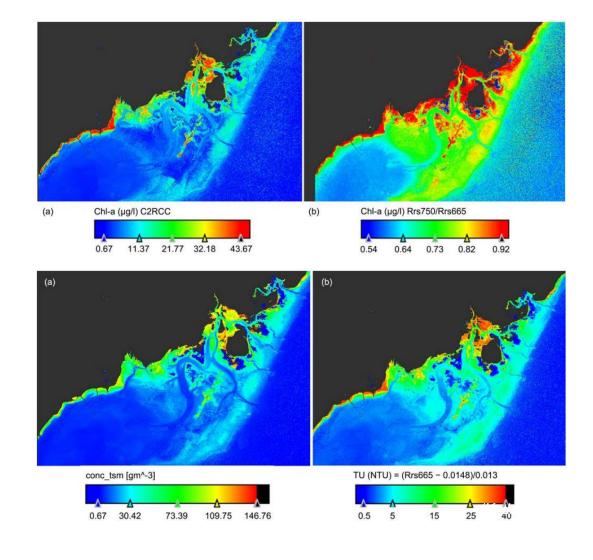
- Chlorophyll: Red, green and visible and near infrared (VNIR) bands
- Suspended matter: Red band

Semi-analytical algorithms

Estimate CHL via spectral absorption of phytoplankton, spectral backscattering by particles & the combined absorption by non-algal particles and colored dissolved organic material (O'Reilly et al., 2019)

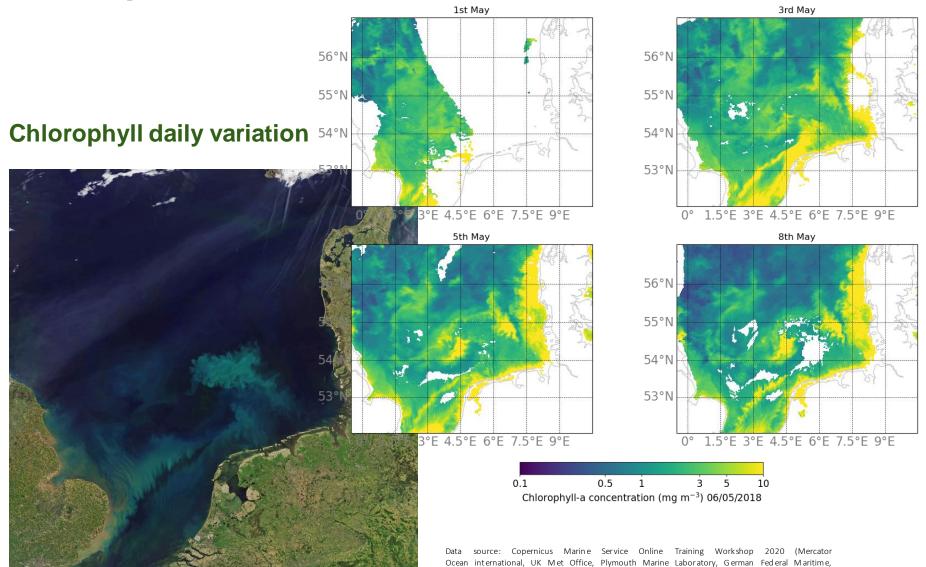
Examples

Chlorophyll



Suspended matter

Examples



RSĩM

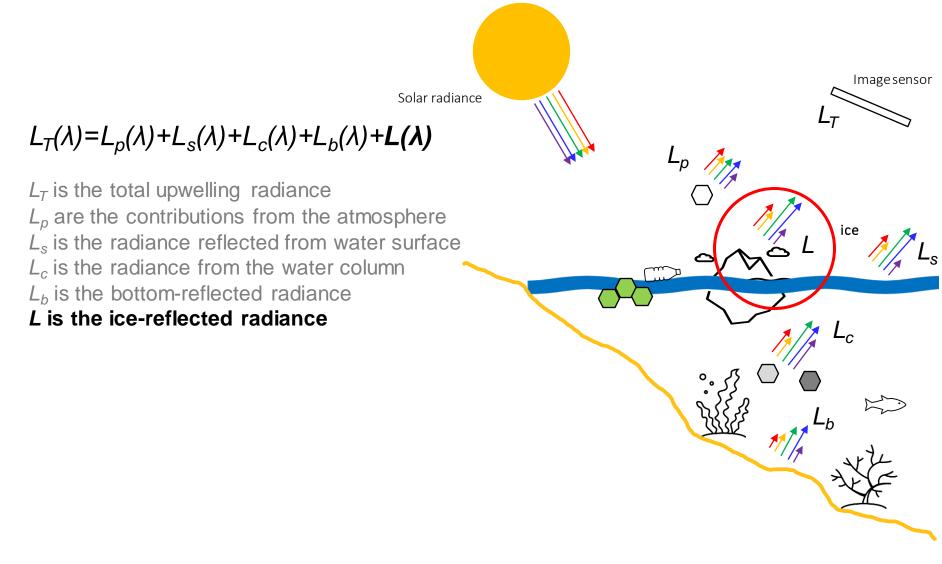
and Hydrographic Agency)

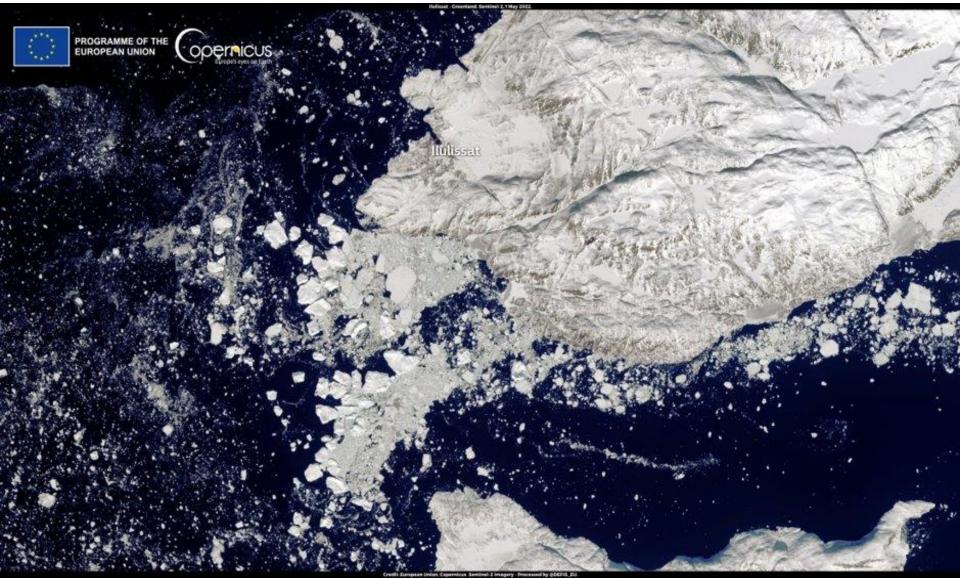
ML applications using radiometric information

• Biogeochemical indices (chlorophyll, nitrates)

Sea ice coverage and state

- Sea surface temperature
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps





How?

Empirical algorithms

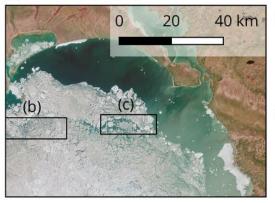
- Exploit spectral characteristics of snow, ice, & water in the visible and NIR
- Simple regression and polynomial models
- Support Vector Machines
- Gaussian Mixture Models
- Fully Conv. Neural Nets.
- ...

Major difficulties to deal with

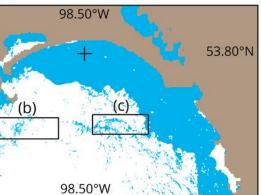
- Clouds: limited visibility & similar spectral characteristics
- Low light conditions: at high latitudes during polar night
- Thin ice at melting stage (black ice) is transparent and appears with the same color of the underlying water

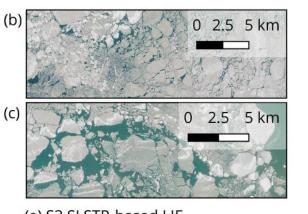
Results of a trained Gaussian Mixture Model on S2 optical data

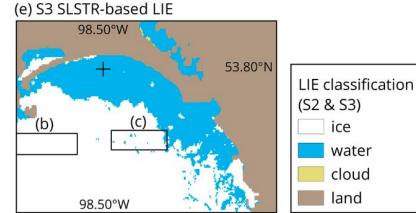
(a) S2 MSI true colour



(d) S2 MSI-based LIE



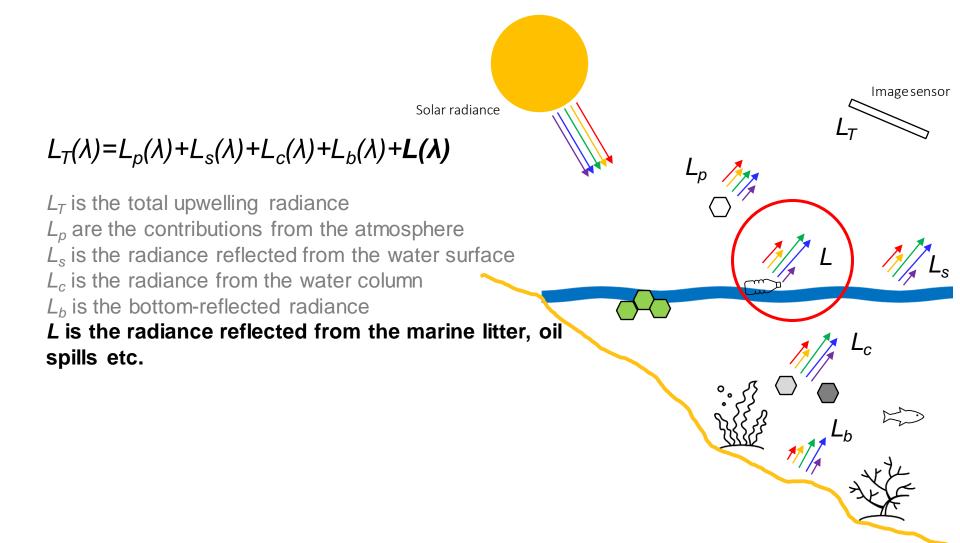




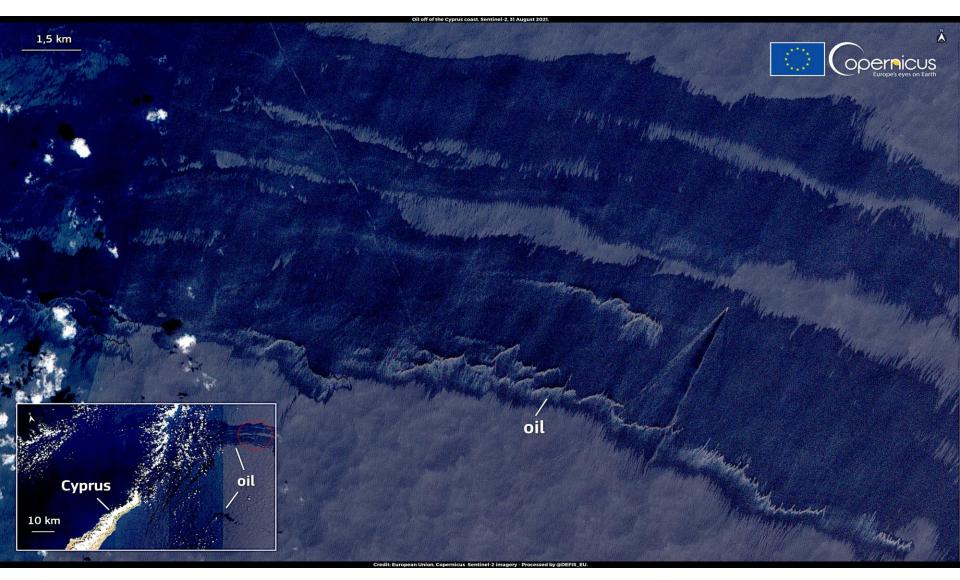
(Heinilä et al., 2021)

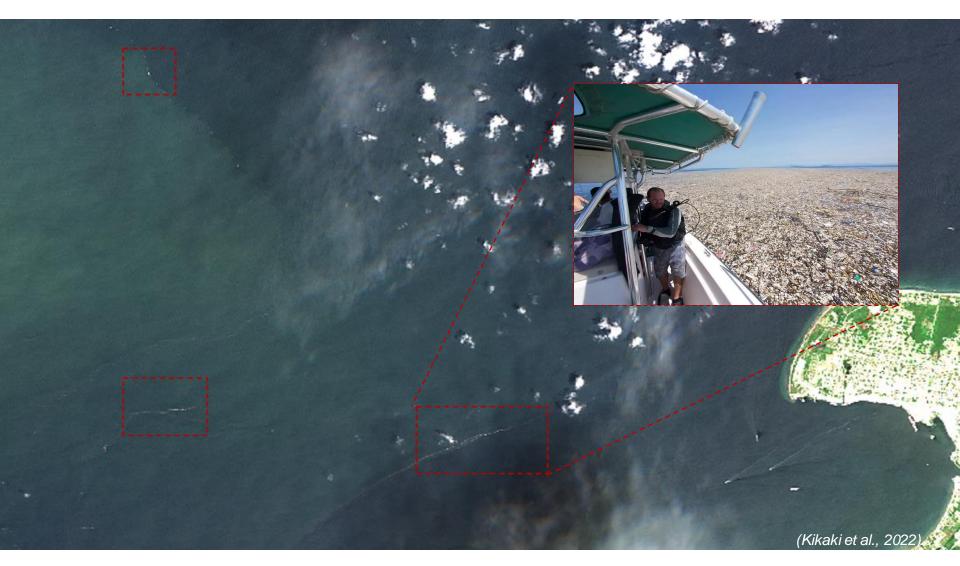
ML applications using radiometric information

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/oil spill detection/tracking
- Shallow water bathymetry
- Shallow seabed cover maps



Pollution/oil spill detection





How?

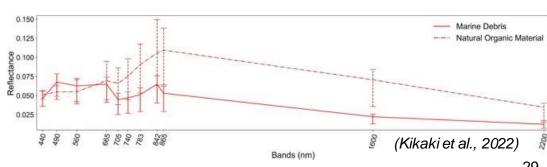
Empirical models

Statistically relate measurements marine debris (i.e. plastic) and reflectance through logistic regression, polynomial expressions or more complex **ML methods**

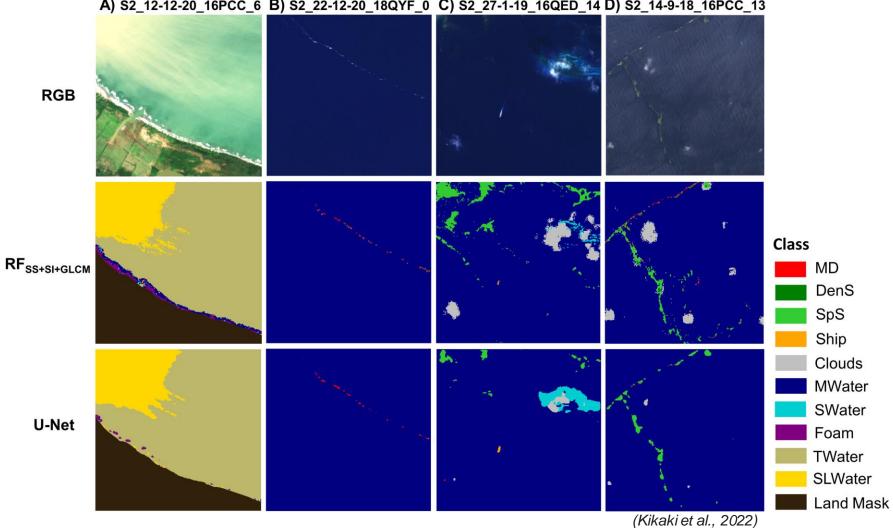
Some ML baselines

Weakly supervised semantic segmentation and multi-label classification:

- RF_{SS} (spectral signatures)
- RF_{SS+SI} (+ calculated spectral indices)
- RF_{SS+SI+GLCM} (+ extracted Gray-Level Co-occurrence Matrix (GLCM) textural feat.)
- U-Net (11 Rayleigh reflectance S2 bands)
- Multi-label classification:
- ResNet



RSîM

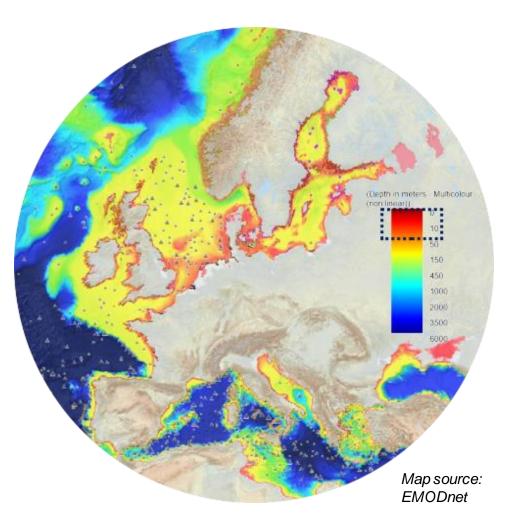


A) S2_12-12-20_16PCC_6 B) S2_22-12-20_18QYF_0 C) S2_27-1-19_16QED_14 D) S2_14-9-18_16PCC_13

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

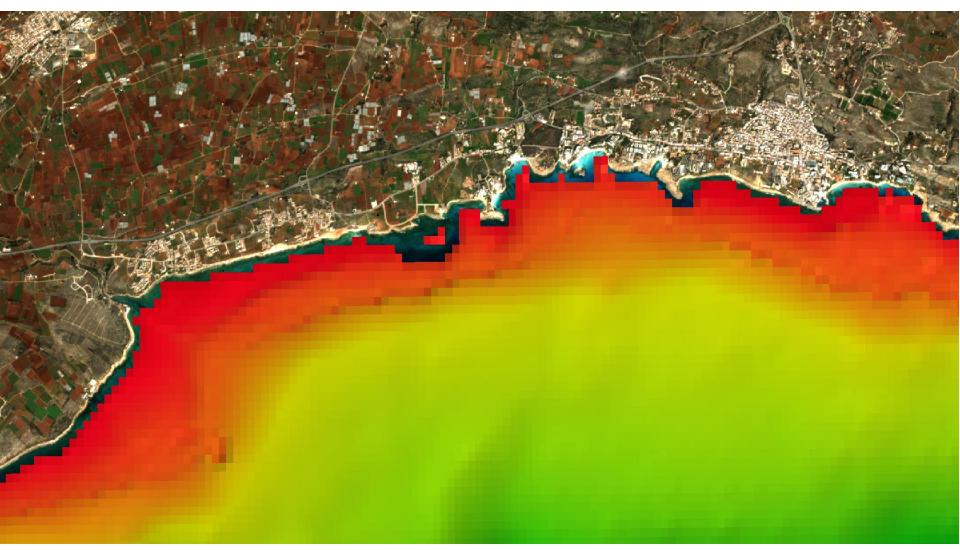
ML applications using radiometric information

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps



2.5% of the EU seabed is "shallow" (<20-25m depth) excluding lakes

RSiM



Satellite Image source: Copernicus - Bathymetry Source: EMODNet (spectral based)

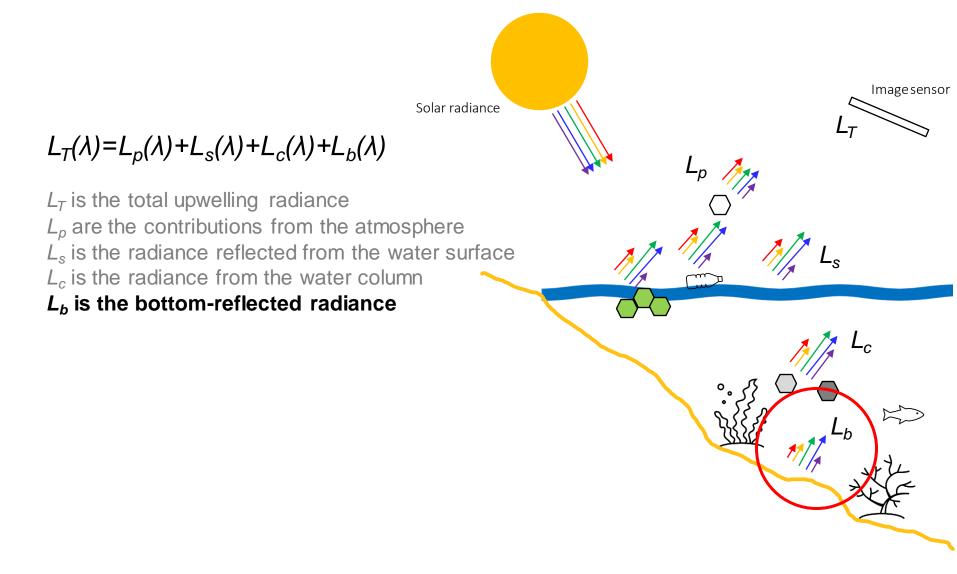
Satellite Image source: Copernicus - UAV Image source Ph. Vision Lab. CUT

Satellite Image source: Copernicus - UAV depths source Ph. Vision Lab. CUT/3DeepVision Research (stereo based and corrected for water refraction using Agrafiotis et al., 2019, 2020, 2021 methods)

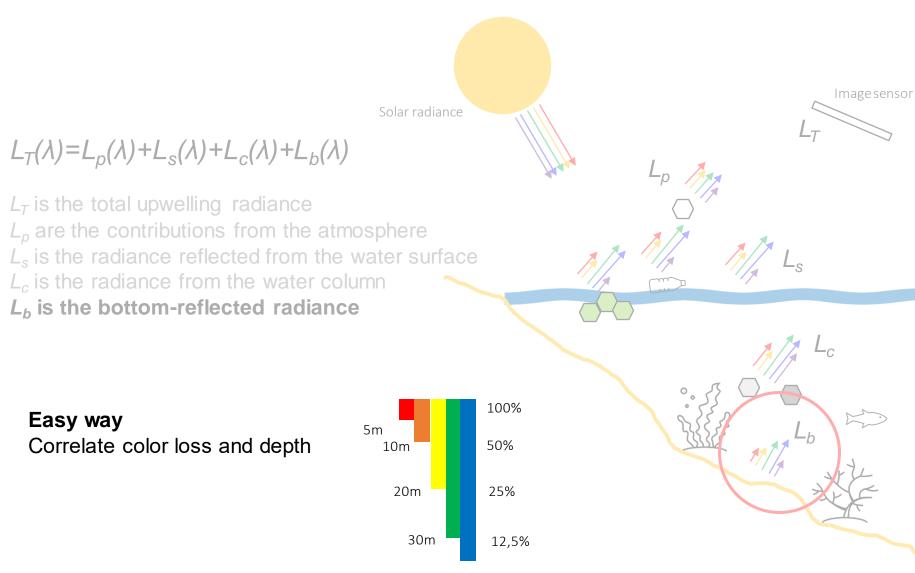
ML applications using radiometric information

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
 - Spectral-based
 - Stereo-based
- Shallow seabed cover maps

Basics of spectral-based bathymetry



Basics of spectral-based bathymetry



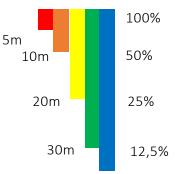
Basics of spectral-based bathymetry

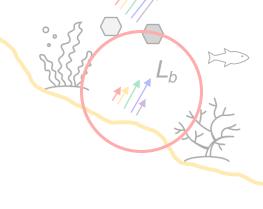
$L_{T}(\lambda) = L_{p}(\lambda) + L_{s}(\lambda) + L_{c}(\lambda) + L_{b}(\lambda)$

 L_T is the total upwelling radiance L_p are the contributions from the atmospheric term from the radiance reflected from the water L_c is the radiance from the water column L_b is the bottom-reflected radiance

Easy way Correlate color loss and depth

What about different seabed classes ?





How?

Statistical models: Statistically relate meas. depth and reflectance – need for ground truth data

• From simple linear regression to ML (RFs, SVMs) and DL (FCNs etc.)

Physics-based radiative transfer models (bio + physio-optical):

- Inversion of a radiative transfer models (RTM) no need for ground truth data
- Analytical
- Semi-empirical (band ratio, band difference, PCA, ANN, regression)
- Semi-analytical (direct linear inversion, spectral deconvolution)

Hybrid methods

Common approaches

• The standard linear algorithm (Lyzenga, 1978) assumes a log-linear relationship between reflectance ($R(\lambda i)$) and water depth (z):.

 $z = b \log R(\lambda_i) + c$

pSDB "pseudo

• Stumpf et al., 2003 bathymetric algorithm The method approximates "physics" of light in the water:

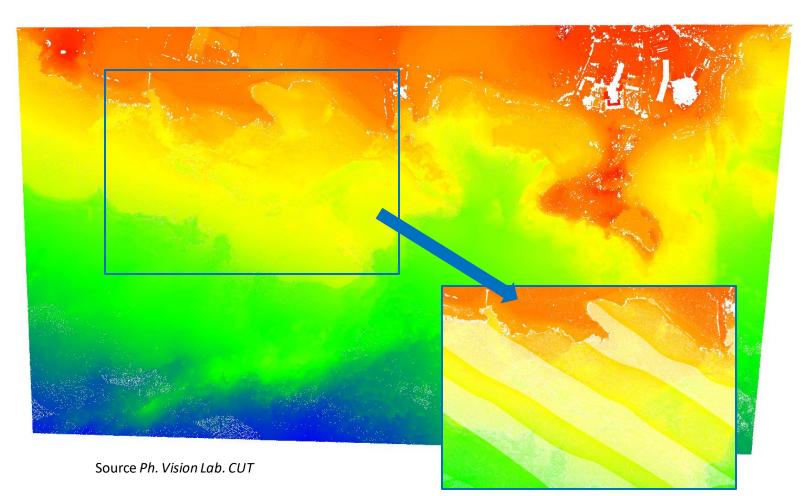
$$Z = m_1 \frac{\ln(nR_w(\lambda_i))}{\ln(nR_w(\lambda_j))} - m_0$$

where m_1 is a tunable constant to scale the ratio to depth, n is a fixed constant for all areas, and m_0 is the offset for a depth of 0m

- Sample-specific multiple band ratio techniques (Niroumand-Jadidi et al., 2020)
- Physics-based radiative transfer model (RTM) inversion techniques
- Shallow and Deep ML techiques (RFs, SVMs, FCNs)

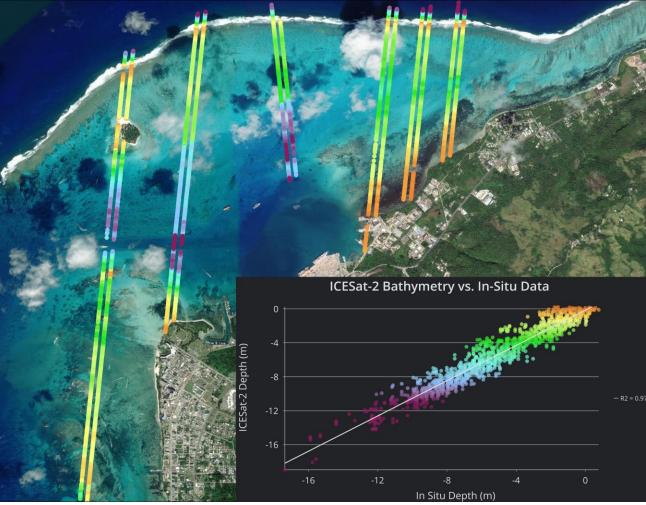
Ground truth data for ML

Airborne LiDAR or shipborne Echosounder



Ground truth data for ML

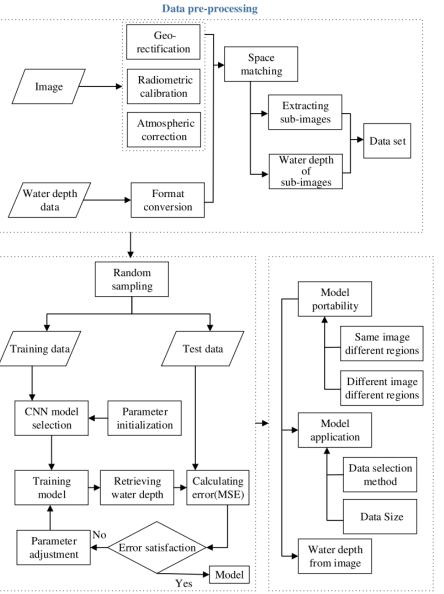
ICESat-2 satellite or similar



RSîM

TCARTA, https://www.tcarta.com/events/geospatial-intelligence-month-april-2020 Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

General depth retrieval flowchart

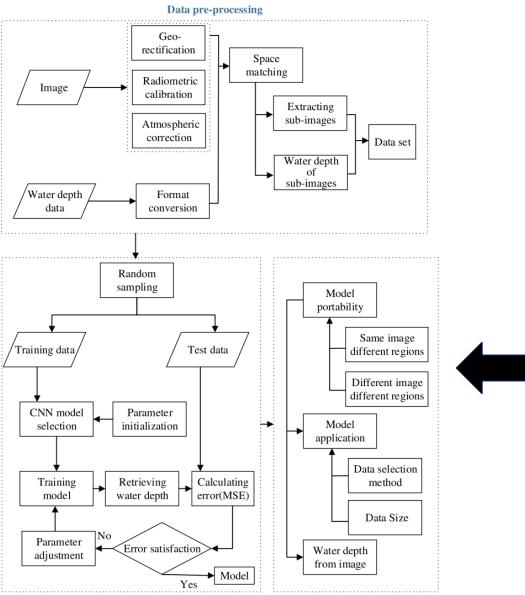


RSiM

Model building

Model verification (Ai et al., 2020) Dr. Panagiotis Agrafiotis, RSiM, TU Berlin 45

General depth retrieval flowchart



RSîM

Model building

Model verification (Ai et al., 2020)

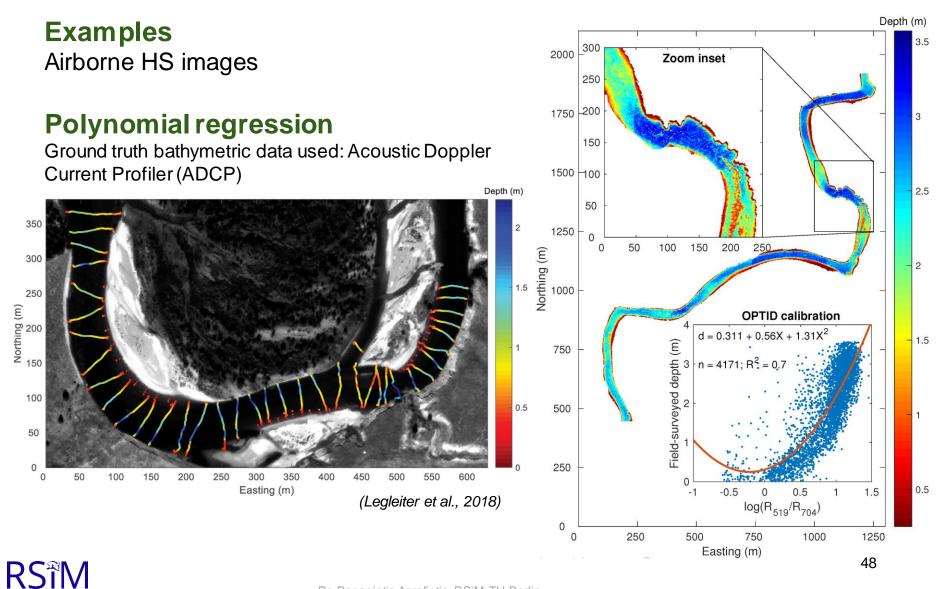
Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

Examples

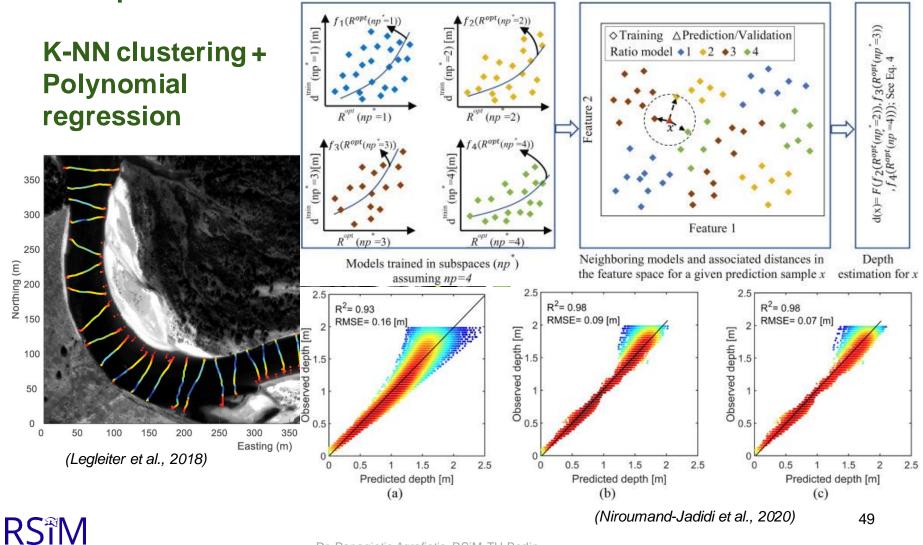
Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

Statistical models



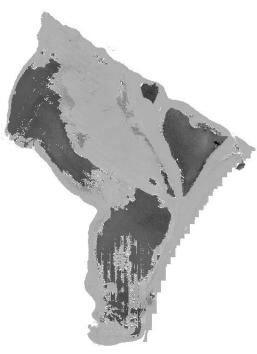
Examples



Examples SPOT6 MS Image

Random Forests

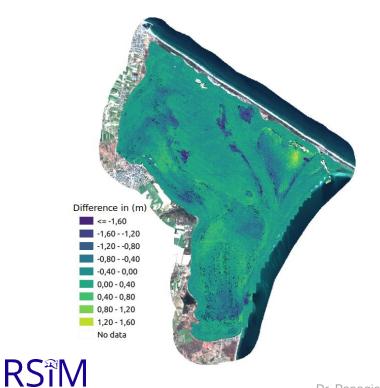
Ground truth bathymetric data used: LiDAR + Singlebeam acoustic Profiler

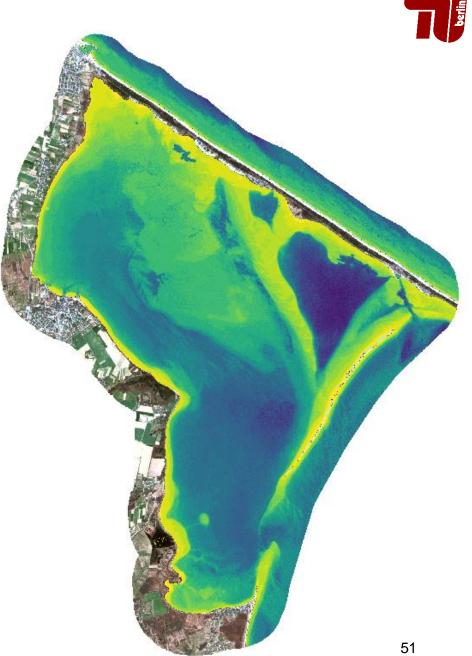


Examples SPOT6 MS Image

Random Forests

Ground truth bathymetric data used: LiDAR + Singlebeam acoustic Profiler

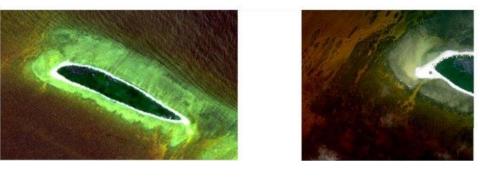


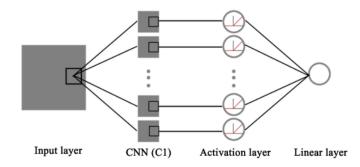


Examples Worldview-2 (WV2) images

CNNs

Ground truth bathymetric data used: Airborne LiDAR





1.4 m -20.6 m

(Ai et al., 2020)

CNN with only one convolutional layer to perform the retrieval work adapted to regression tasks

Dataset here cannot reach a larger dimension in terms of structure and data volume and is not suitable for deeper networks.

Spectral-based methods

Pros, Issues and Limitations

- No sophisticated geometry processing necessary ٠
- Can handle certain differences in substrate type and water clarity •
- Covers large areas (satellites)
- Max depth ~ 1 Secchi

the max depth a disk 30cm is visible

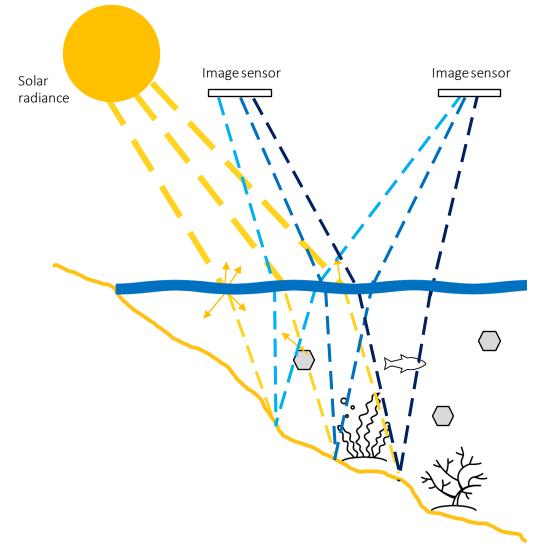
- Requires visibility of bottom features (similar to SfM-MVS, but not texture is required here)
- Work better on homogenous seabed
- **Requires ground-truth for calibrating coefficients**
- Heavily affected by sun glint, high aerosol, turbidity etc.
- Lack of generalization potential due to the daily/seasonal etc. ٠ variability of spectral values

Secchi disk

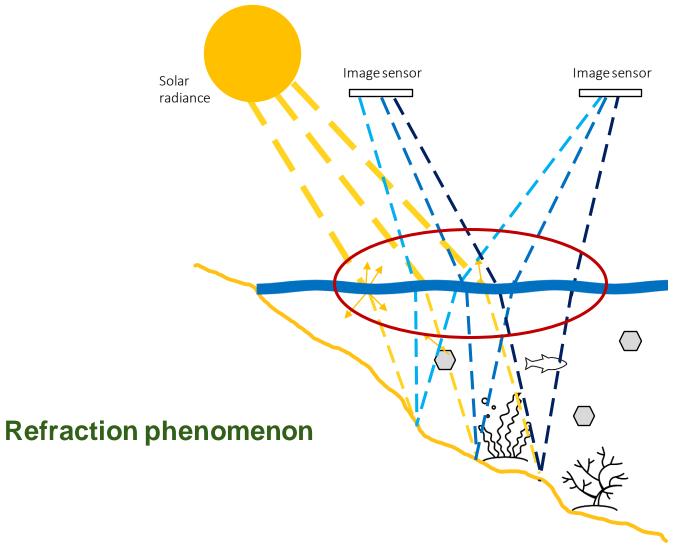
ML applications using geometric information

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
 - Spectral-based
 - Stereo-based
- Shallow seabed cover maps

Basics of stereo-based models



Basics of stereo-based models

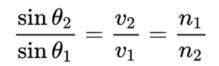


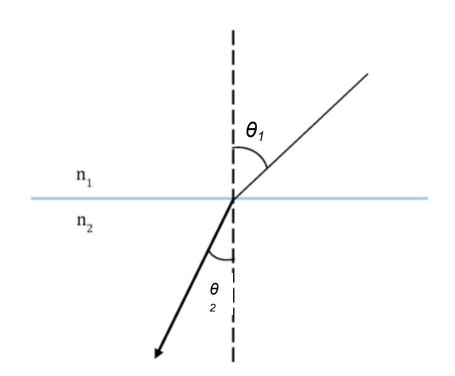
Refraction phenomenon

Snell's law

The ratio of the sines of the angles of incidence and refraction is equivalent to the ratio of phase velocities in the two media

The law is based on **Fermat's principle**, also known as the principle of least time Fermat's principle states that the path taken by a ray between two given points is the path that can be traversed in the least time.



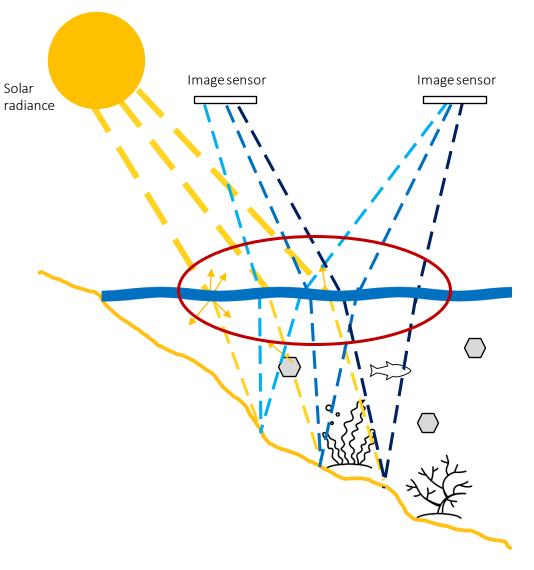


Refraction phenomenon

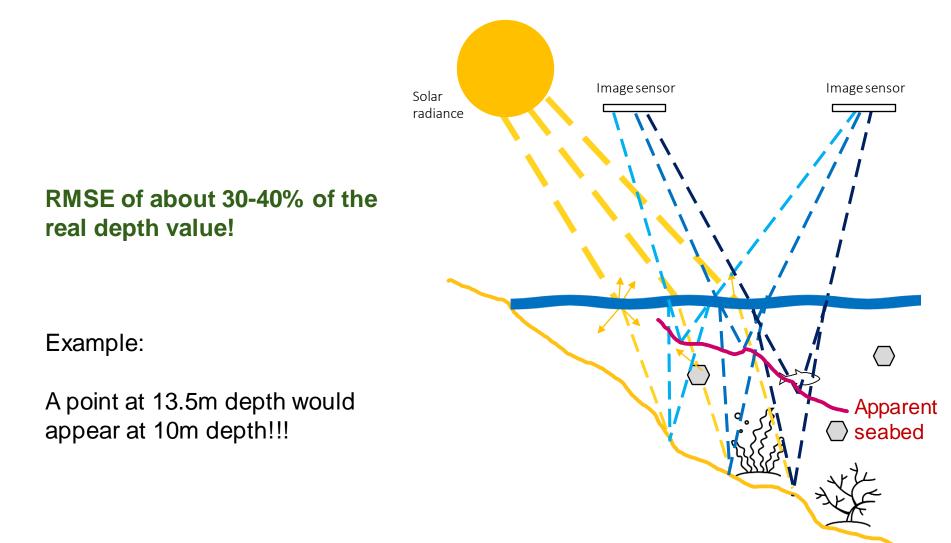
Refraction effect is totally different for each image and each image point!

It depends on

- Depth
- Angle
- Camera position



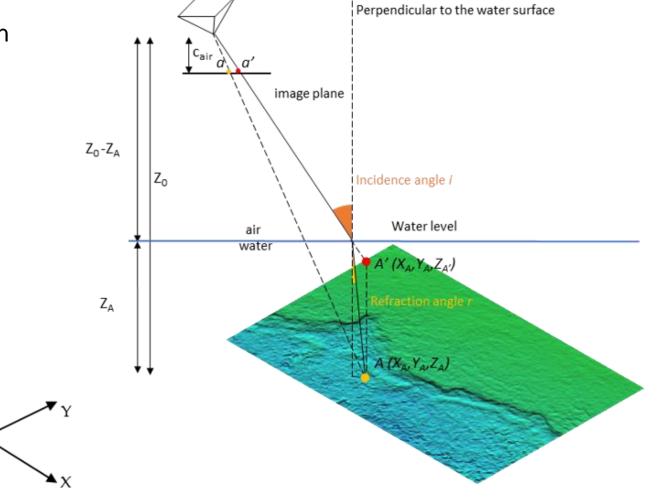
Refraction phenomenon



Single View Geometry

Ζ

- Violation of the Collinearity Equation
- Apparent depths



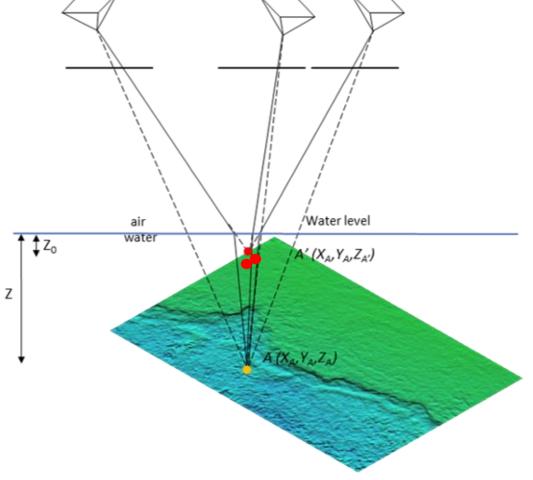
Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

Multiple-View Geometry

- Violation of the Collinearity Equation – different for each point -> for each image
- Apparent depths

RSĩM

Increased noise in the 3D point clouds



Refraction correction basics

Since SfM-MVS software is delivering 3D point clouds even when refraction is ignored, can we skip it?

– **NO**, it's physics!

To deliver accurate SfM-MVS results, orthoimages, Digital Elevation Models etc., the correction of refraction effects is necessary!

Stereo-based bathymetry

How?

Structure from Motion – Multi-View Stereo + Refraction correction

Refraction correction

Analytical correction

Modification of the collinearity equation. (1950...)

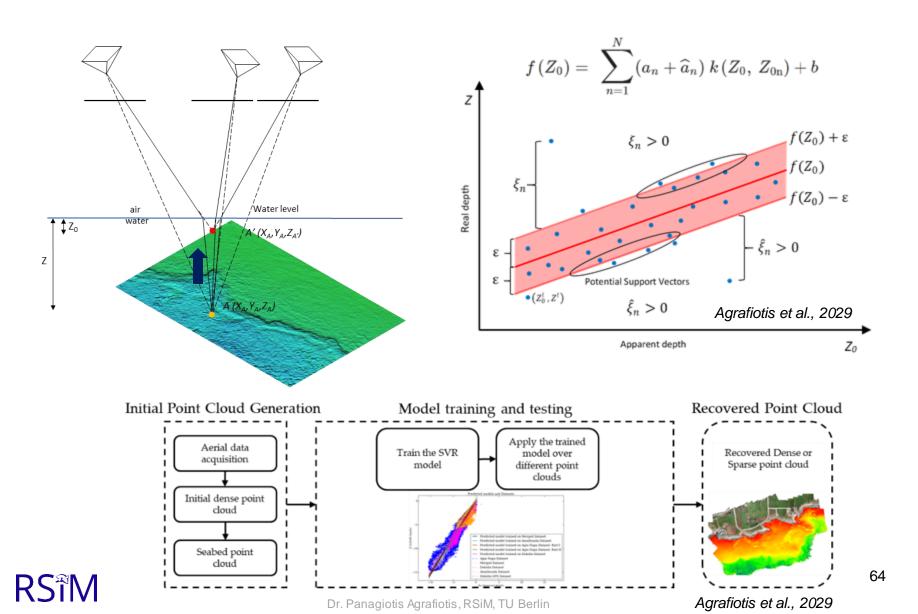
Image-space correction

Re-projection of the original photo to correct the water refraction. (2018...)

Machine learning-based

Depends on machine learning models that learn the underestimation of depths and predict the correct depth knowing only the apparent one. (2019...)

3D Space Correction



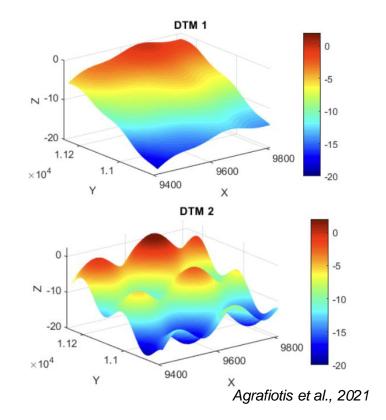
Need for synthetic data

Train ML models

- Avoid errors and limitations in image matching caused by the visibility restrictions (turbidity, caustics, sun glint)
- Avoid errors introduced by the wavy surface

The only unknown is the refraction effect

- 8 datasets 4 with refraction and 4 without
- Flying height from 150m-2800m
- Various sensors
- Camera constant from 3.6mm to 100.5mm

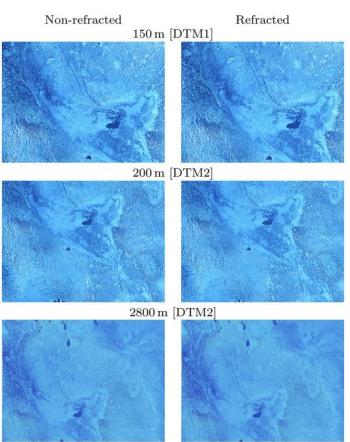


Need for synthetic data

Train ML models

- Avoid errors and limitations in image matching caused by the visibility restrictions (turbidity, caustics, sun glint)
- Avoid errors introduced by the wavy surface

The only unknown is the refraction effect



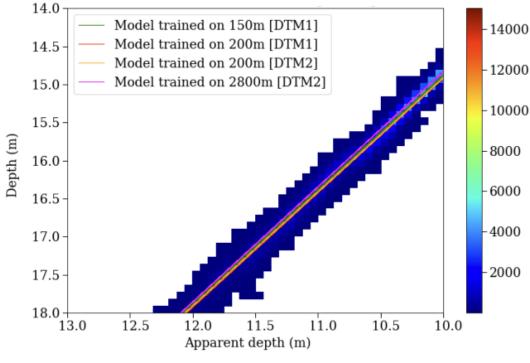
Results

Agrafiotis et al., 2021

65% RMSE reduction compared to the state of the art (LiDAR ground truth data used) **94%** RMSE reduction in depth determination between corrected and uncorrected data (LiDAR ground truth data used)

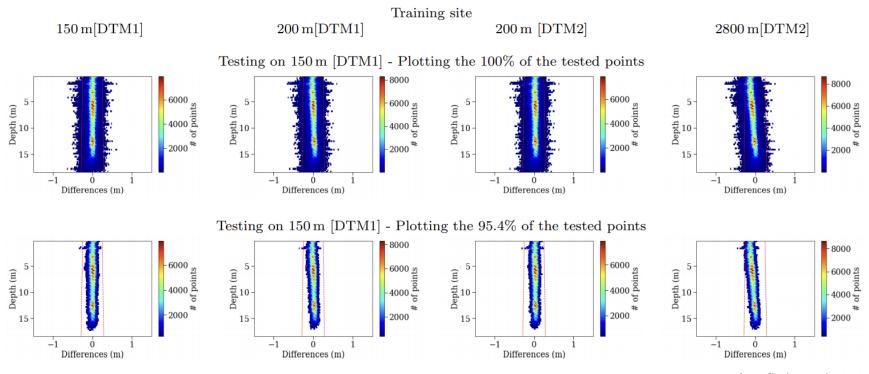
Need for synthetic data

Training the ML models only on synthetic data



Agrafiotis et al., 2021

Differences between the real and corrected depths – synthetic data



Agrafiotis et al., 2021

UAV synth. data: RMSE of 3.34m reduced to **0.09m**! Aircraft-borne synth. data: RMSE of 6.38m reduced to **0.20m**!

Differences between the real and corrected depths – real data

Cyclades-1 Cyclades-2 Amathounta Agia Napa Uncorrected 2.02.0 400 0.5 0.6 40 1.8 1.8 0.8 - 300 stuid 200 boints 100 1.6 of jo 0.1 (m) 1.5 (m) 30 200 # (m) 1.0 1.2 Depth (m) Uncorrected data .4 5 # 1.4 10 1.2 2.0 1.6 15 + 0.01.0 .0 5.0 7.5 10.0 0.00 0.25 0.75 0.25 0.50 0.75 2 2.5 0.50 1.00 0.00 1.00 4 Differences (m) Differences (m) Differences (m) Differences (m) Method 2 (Dekelia) 0.0 -3.0 0.0 2.0 80 1.8 .1 0.5 0.5 40 foints Depth (m) # of points Depth (m) Depth (m) of points Depth (m) 1.6 of Joint 1.4 of Joint 1.4 of Joint 2.4 o Corrected/trained on real-world data # 1.5 1.5 20 4 1.2 20 2.0 1.0 2.0 1.0 .5 -10 -1 -5 -1 -1Ó Ó 5 10 Ó Differences (m) Differences (m) Differences (m) Differences (m) Method 2 (Synth.) 0.0 2.0 0.0 -2.0 1 1.8 1.8 Depth (m) 5 30 30 30 # 0.5 2 4 3 # of points Depth (m) Depth (m) Depth (m) 1.6 of Joints 1.4 of Joints 1.6 jo Corrected/trained on synthetic data # 15 1.5 4 1.2 1.2 1.0 10 5 20 2.0 2.0 -10 Ó -5 10 -10 5 -10 -10 Differences (m) Differences (m) Differences (m) Differences (m)

Agrafiotis et al., 2021

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

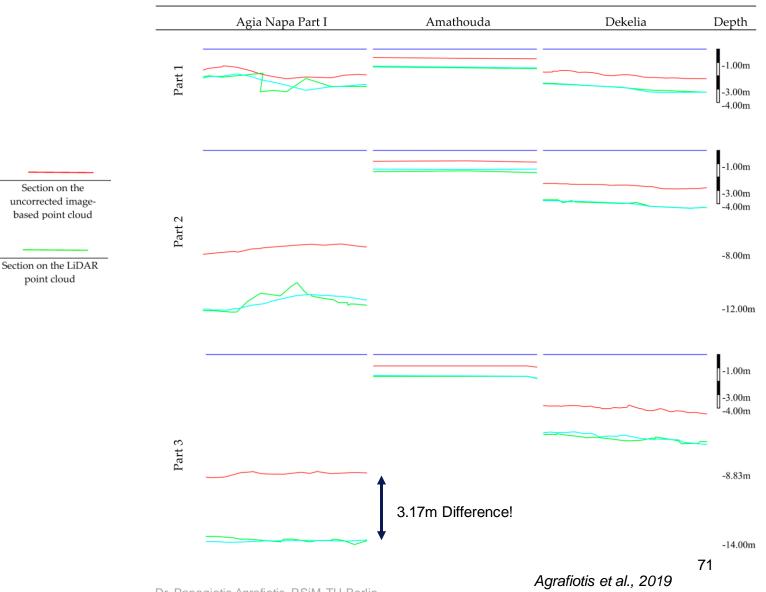
RS[®]M

Differences between the real and corrected depths – real data

Test site												
	Amathounta 1K 5.57/0.10			Agia Napa 75K 14.8/0.20			Cyclades-1 23 6.9/0.0			Cyclades-2 34 4.05/0.0		
Check points												
Max/Min depth (m)												
Point clouds from different methods	Statistical analysis [m]											
	$\overline{\overline{x}}$	σ	RMSE _Z	\overline{x}	σ	RMSE _Z	\overline{x}	σ	RMSE _Z	\overline{x}	σ	RMSE ₂
Uncorrected images	0.67	2.19	2.28	1.71	1.18	2.08	0.32	0.10	0.33	0.54	0.29	0.62
Method 3	-0.27	0.40	0.49	0.63	1.02	0.98	-0.08	0.10	0.12	-0.23	0.26	0.34
Method 4	0.49	0.54	0.73	-1.55	1.49	1.75	0.38	0.25	0.46	-0.15	0.24	0.28
Method 4 (filt.)	0.22	0.40	0.45	0.43	0.72	0.84	-0.06	0.09	0.10	-0.20	-0.30	0.36
Method 1 (Dekelia)	-0.09	0.18	0.28	-0.13	0.51	0.55	0.02	0.09	0.09	-0.01	0.21	0.21
Method 1 (Synth.)	-0.04	0.13	0.14	0.06	0.41	0.42	-0.05	0.06	0.07	-0.05	0.12	0.13
Method 5	-0.39	0.88	0.96	-0.05	0.74	0.74	0.15	0.42	0.46	-0.28	0.36	0.46
Method 2 (Dekelia)	-0.19	0.28	0.31	-0.04	0.37	0.38	-0.02	0.09	0.09	-0.06	0.14	0.15
Method 2 (Synth.)	-0.04	0.12	0.13	-0.03	0.21	0.23	0.00	0.06	0.07	-0.05	0.06	0.09

Agrafiotis et al., 2021

Cross sections



The respective parts of the cross sections

RSĩM

Legend

Sea surface

Section on the

corrected imagebased point cloud

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

Image Space Correction

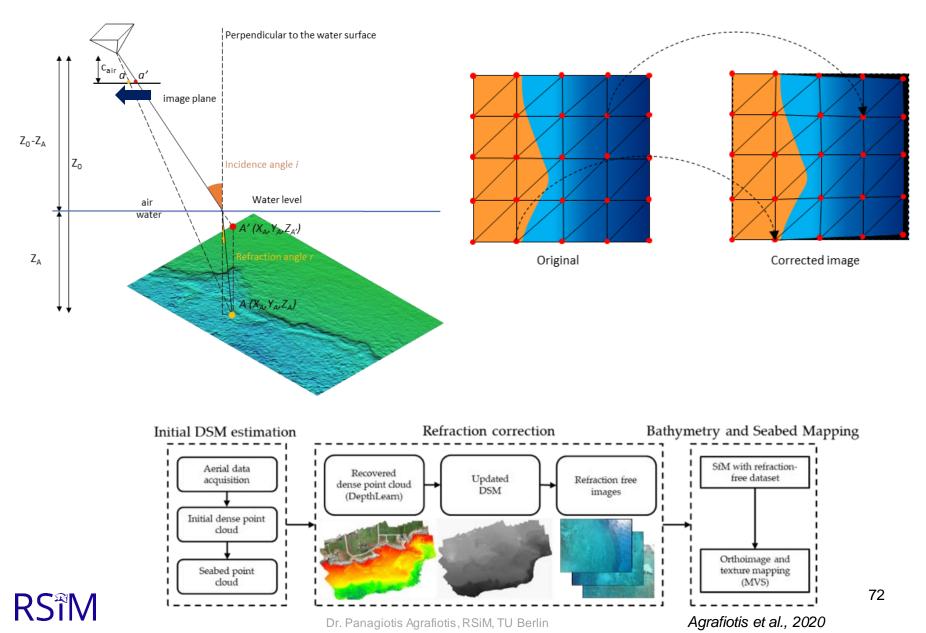
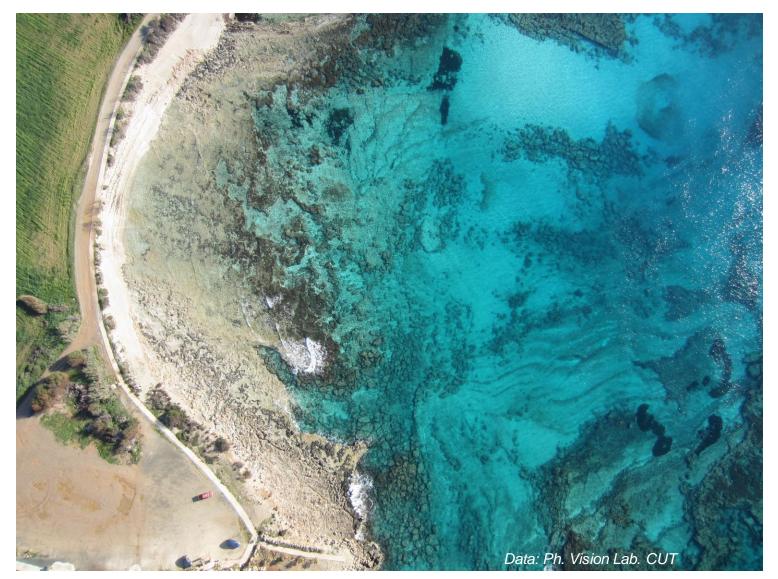


Image Space Correction



Uncorrected image Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

73

Image Space Correction

RSĩM

Corrected image Dr. Panagiotis Agrafiotis, RSiM, TU Berlin

74

Deliverable example

RSĩM

Stereo-based methods

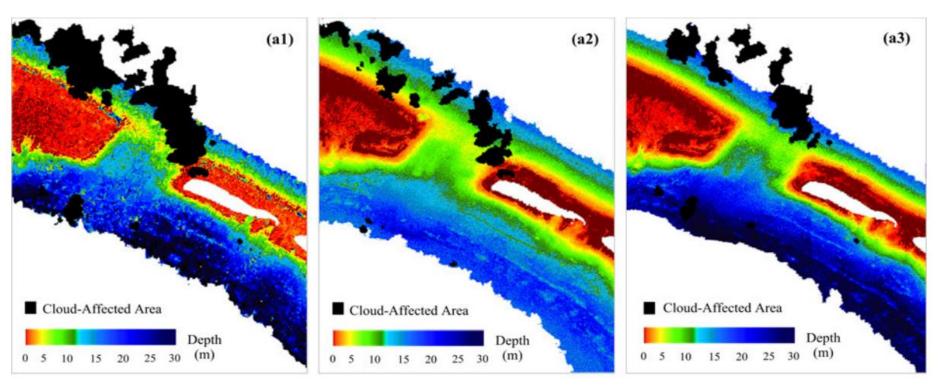
Pros, Issues and Limitations

- Measured depth through triangulation & Delivers color information
- Delivers high 3D point density in shallow water areas
- Max depth ~ 1 Secchi
- Combined DEMs of emerged and submerged areas
- More accurate compared to spectral-based methods, WHEN refraction is corrected
- Refraction correction is necessary
- Passive method
- Geometric
- Requires texture to perform SfM-MVS

Stereo-based

Spectral-based (left image)

Spectral-based (right image)

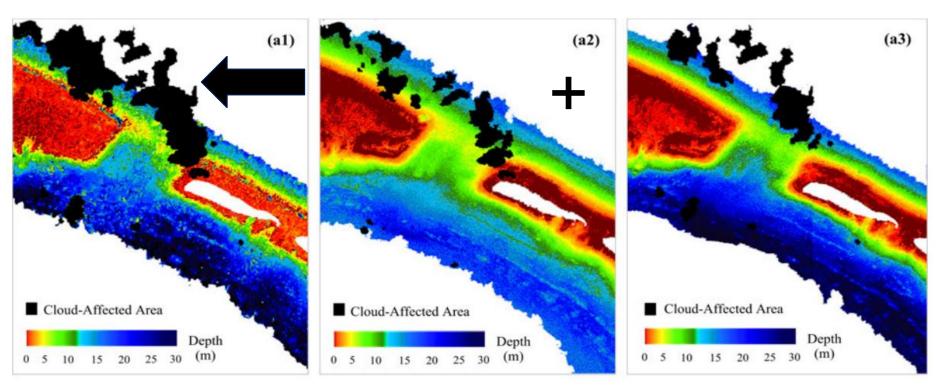


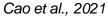
Cao et al., 2021

Stereo-based

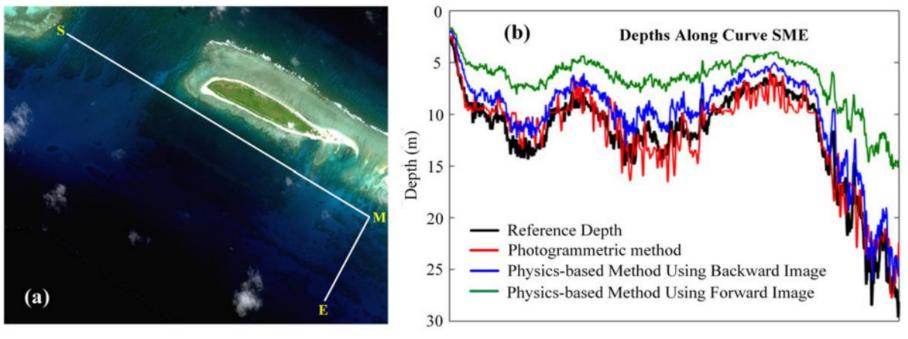
Spectral-based (left image)

Spectral-based (right image)





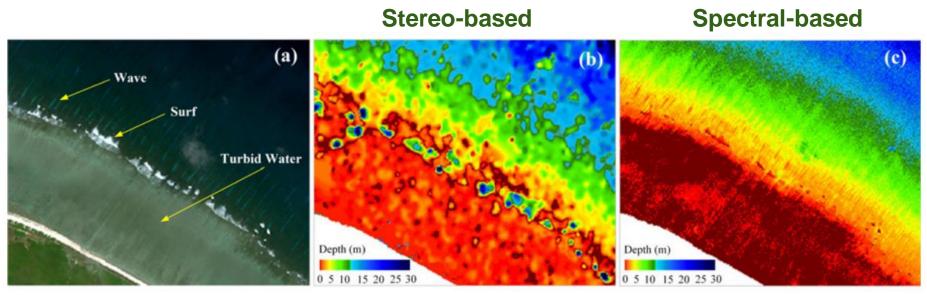
Cross sections of the derived bathymetries



Cao et al., 2021

RSĩM

Wave breaking and turbidity effects

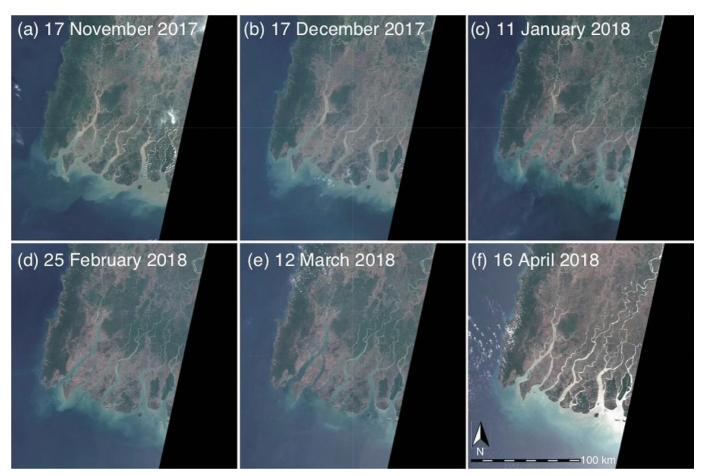


Cao et al., 2021

Seasonal/Monthly variation

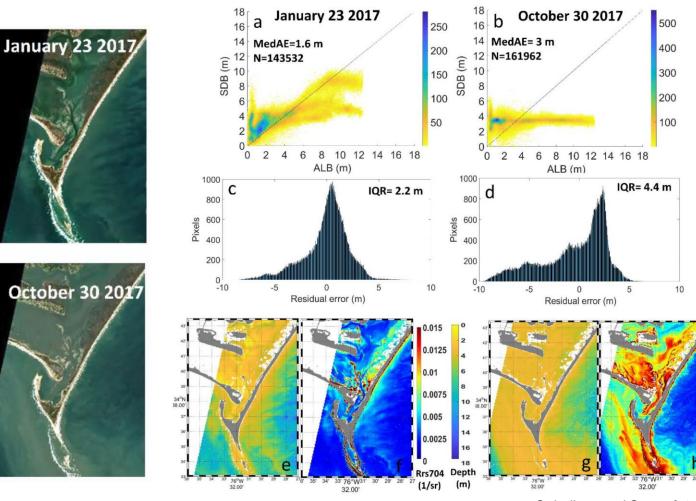
MANY different spectral signatures for same pixels

 Limited generali zation of trained models



(Sakai et al., 2021)

Seasonal/Monthly variation

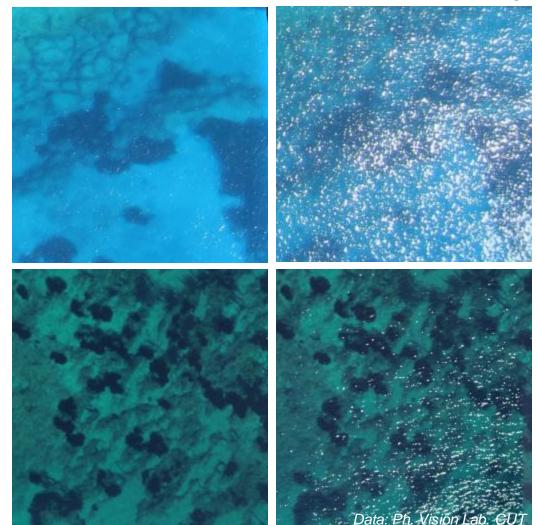


Caballero and Stumpf, 2020

Instant variation

t

t+5sec OR different angle



Caused by

- Change in point of view
- Sun glint
- Caustics
- Currents
- Ships and boats
- Clouds

RS[®]M

ML applications using radiometric information

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

How?

Statistical models: Statistically relate meas. seabed cover and reflectance – need for ground truth data

• From simple regression to ML (RFs, SVMs) and DL (FCNs etc.)

Shallow seabed cover maps

Examples SPOT6 MS Image

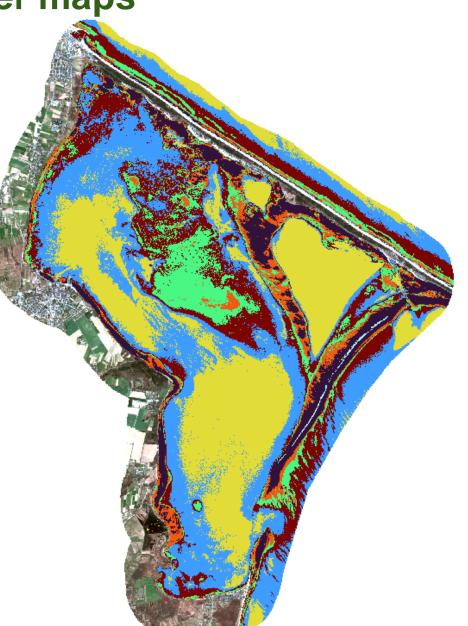
berlin

Shallow seabed cover maps

Examples SPOT6 MS Image

FCN+ResNet101

Weakly supervised semantic segmentation and multi-label classification



References

- Heinilä, K., Mattila, O. P., Metsämäki, S., Väkevä, S., Luojus, K., Schwaizer, G., & Koponen, S. (2021). A novel method for detecting lake ice cover using optical satellite data. *International Journal of Applied Earth Observation and Geoinformation*, *104*, 102566.R. E. Woods, Digital Image Processing, 2nd edition, Prentice Hall, 2001.
- Kikaki, K., Kakogeorgiou, I., Mikeli, P., Raitsos, D. E., & Karantzalos, K. (2022). MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. *PloS one*, *17*(1), e0262247.
- Sakai, T., Omori, K., Oo, A. N., & Zaw, Y. N. (2021). Monitoring saline intrusion in the Ayeyarwady Delta, Myanmar, using data from the Sentinel-2 satellite mission. *Paddy and Water Environment*, *19*(2), 283-294.
- Niroumand-Jadidi, M., Bovolo, F., & Bruzzone, L. (2020). SMART-SDB: Sample-specific multiple band ratio technique for satellite-derived bathymetry. *Remote Sensing of Environment*, 251, 112091.
- Ai, Bo, et al. "Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images." *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 13 (2020): 2888-2898.
- Katlane, R., Dupouy, C., El Kilani, B., & Berges, J. C. (2020). Estimation of chlorophyll and turbidity using sentinel 2A and EO1 data in Kneiss Archipelago Gulf of Gabes, Tunisia. *International Journal of Geosciences*, *11*, p-708.
- Cao, B., Deng, R., Xu, Y., Cao, B., Liu, Y., & Zhu, S. (2021). Practical Differences Between Photogrammetric Bathymetry and Physics-Based Bathymetry. *IEEE Geoscience and Remote Sensing Letters*, *19*, 1-5.
- Agrafiotis, P., Karantzalos, K., Georgopoulos, A., & Skarlatos, D. (2020). Correcting image refraction: Towards accurate aerial image-based bathymetry mapping in shallow waters. *Remote Sensing*, *12*(2), 322.
- Agrafiotis, P., Skarlatos, D., Georgopoulos, A., & Karantzalos, K. (2019). DepthLearn: learning to correct the refraction on point clouds derived from aerial imagery for accurate dense shallow water bathymetry based on SVMs-fusion with LiDAR point clouds. *Remote Sensing*, *11*(19), 2225.
- Agrafiotis, P., Karantzalos, K., et al. Learning from Synthetic Data: Enhancing Refraction Correction Accuracy for Airborne Image-Based Bathymetric Mapping of Shallow Coastal Waters. PFG 89, 91–109, 2021
- Agrafiotis, P., Skarlatos, D., Georgopoulos, A., & Karantzalos, K. (2019). SHALLOW WATER BATHYMETRY MAPPING FROM UAV IMAGERY BASED ON MACHINE LEARNING. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, *42*, 9-16.
- Bianco, G., Muzzupappa, M., Bruno, F., Garcia, R., & Neumann, L. (2015). A new color correction method for underwater imaging. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 25.
- Caballero, I., & Stumpf, R. P. (2020). Towards routine mapping of shallow bathymetry in environments with variable turbidity: contribution of Sentinel-2A/B satellites mission. *Remote Sensing*, 12(3), 451.

