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RS platforms can "see the sea" in ways that are 

otherwise impossible

Why?

Marine animal
forests

Navigation
Constructions
Mining

Cultural Heritage

Tourism

Map/monitor marine animal
forests

Marine litter 
detection

Support action 
for climate
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What platforms and data?

Satellites, occupied airborne or unoccupied airborne (drones)

• RGB + Multispectral imagery

• LiDAR (LIght Detection And Ranging)

• Synthetic-aperture radar (SAR) altimeters

• Other special payload instruments (radiometers etc.)
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• Exploit the RADIOMETRIC information of one or more scenes

• Exploit the GEOMETRIC information derived by two or more scenes 

(stereo etc.)

6

How can we get the required information?
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What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking
• Shallow water bathymetry

• Shallow seabed cover maps
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Reflection
Scattering

Refraction

Diffuse

Sun rays

5m

10m

20m

30m

Only 1% of the light reaches the depth of 100m

100%

50%

25%

12,5%

Diffuse

Light absorption in water column

Water molecules absorb almost all sunlight
except for the blue part of the spectrum,
which is reflected back.
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20m

30m
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25%

12,5%

Light absorption in water column

9

Optically clear waters

Bottom is visible till the depth of 20-25m
Image source: 

Copernicus, https://dataspace.copernicus.eu/
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5m

10m

20m

30m

100%

50%

25%

12,5%

Light absorption in water column

10

Optically clear waters but with higher chlorophyll etc. concentration and darker bottom

Bottom is visible till the depth of 4-5m
Image source: 

Copernicus, https://dataspace.copernicus.eu/
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Basics of Spectral-based methods

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

Ls

Lc

LT

Ls depends on the roughness of the water surface and 

sun position (sun glint)

Lb is related to depth and is the radiance reflected by the bottom

Lc is related to the water’s optical property (i.e. turbidity)
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ML applications

using radiometric information

• Biogeochemical indices (i.e., chlorophyll)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Biogeochemical indices

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)+L(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

L is the radiance from the biogeochemical particles

Solar radiance

Lp

Lb

Imagesensor

L

Lc

LT

algae

Disolved organic
matter

Inorganic
suspendedmaterial
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Suspended matter (turbidity)
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Chlorophyll (algae)
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Get biogeochemical indices

How?

Empirical algorithms
Statistically relate measurements of i.e. chlorophyll (CHL) or suspended matter 

and reflectance through regression, polynomial expressions or Artificial Neural 

Networks

Widely used bands:

• Chlorophyll: Red, green and visible and near infrared (VNIR) bands

• Suspended matter: Red band

Semi-analytical algorithms
Estimate CHL via spectral absorption of phytoplankton, spectral 

backscattering by particles & the combined absorption by non-algal particles 

and colored dissolved organic material (O'Reilly et al., 2019)
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Examples

Suspended matter

Chlorophyll

(Katlane et al., 2020)
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Examples

Chlorophyll daily variation

19

Data source: Copernicus Marin e Service Online Training Workshop 2020 (Mercator
Ocean international, UK Met Office, Plymouth Marine Laboratory, G erman Federal Maritime,
and Hydrographic Agency)
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ML applications using radiometric information

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Sea ice

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)+L(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

L is the ice-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

L

Lc

LT

ice
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Sea ice
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How?

Empirical algorithms

• Exploit spectral characteristics of snow, ice, & water in the visible and NIR

• Simple regression and polynomial models

• Support Vector Machines
• Gaussian Mixture Models

• Fully Conv. Neural Nets.

• ...

Major difficulties to deal with

• Clouds: limited visibility & similar spectral characteristics

• Low light conditions: at high latitudes during polar night

• Thin ice at melting stage (black ice) is transparent and appears with the 

same color of the underlying water

23

Sea ice
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(Heinilä et al., 2021)
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Sea ice

Results of a trained Gaussian Mixture Model on S2 optical data
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ML applications using radiometric information

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Marine Debris

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)+L(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

L is the radiance reflected from the marine litter, oil 

spills etc.

Solar radiance

Lp

Lb

Imagesensor

L

Lc

LT
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Pollution/oil spill detection
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Marine Debris

(Kikaki et al., 2022)
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Marine Debris

(Kikaki et al., 2022)

How?

Empirical models
Statistically relate measurements marine debris (i.e. plastic) and reflectance through 

logistic regression, polynomial expressions or more complex ML methods

Some ML baselines
Weakly supervised semantic segmentation and multi-label classification:

• RFSS (spectral signatures)

• RFSS+SI (+ calculated spectral indices)
• RFSS+SI+GLCM (+ extracted Gray-Level Co-occurrence Matrix (GLCM) textural feat.)

• U-Net (11 Rayleigh reflectance S2 bands)

• Multi-label classification:

• ResNet

• ...

(Kikaki et al., 2022)
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Marine Debris

(Kikaki et al., 2022)
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ML applications using radiometric information

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Shallow Water Bathymetry

2.5% of the EU seabed is 

“shallow” (<20-25m depth) 

excluding lakes

Map source: 

EMODnet
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Shallow Water Bathymetry

Image source: 

Copernicus, https://dataspace.copernicus.eu/
33
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Shallow Water Bathymetry

Satellite Image source: Copernicus - Bathymetry Source: EMODNet (spectral based)
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Shallow Water Bathymetry

Satellite Image source: Copernicus - UAV Image source Ph. Vision Lab. CUT
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Shallow Water Bathymetry

36

Satellite Image source: Copernicus - UAV depths source Ph. Vision Lab. CUT/ 3DeepVision Research (stereo based and corrected for 

water refraction using Agrafiotis et al., 2019, 2020, 2021 methods)
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ML applications using radiometric information

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Spectral-based

• Stereo-based

• Shallow seabed cover maps
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Basics of spectral-based bathymetry

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

Ls

Lc

LT
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Basics of spectral-based bathymetry
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5m
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20m

30m
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50%

25%

12,5%

Easy way

Correlate color loss and depth
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5m
10m

20m

30m

100%

50%

25%

12,5%

Easy way

Correlate color loss and depth

What about different seabed 

classes ?

Data: Ph. Vision Lab. CUT
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Spectral-based Bathymetry

How?

Statistical models: Statistically relate meas. depth and reflectance – need for 

ground truth data

• From simple linear regression to ML (RFs, SVMs) and DL (FCNs etc.)

Physics-based radiative transfer models (bio + physio-optical):
• Inversion of a radiative transfer models (RTM) – no need for ground truth data

• Analytical

• Semi-empirical (band ratio, band difference, PCA, ANN, regression)

• Semi-analytical (direct linear inversion, spectral deconvolution)

Hybrid methods

41
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Statistical models

Common approaches

• The standard linear algorithm (Lyzenga, 1978) assumes a log-linear 

relationship between reflectance (R(𝜆i )) and water depth (z):.

• Stumpf et al., 2003 bathymetric algorithm

The method approximates “physics” of light in the water:

• Sample-specific multiple band ratio techniques (Niroumand-Jadidi et al., 2020)

• Physics-based radiative transfer model (RTM) inversion techniques

• Shallow and Deep ML techiques (RFs, SVMs, FCNs)

where m1 is a tunable constant to scale the ratio to 
depth, n is a fixed constant for all areas, and m0 is the 

offset for a depth of 0m

pSDB “pseudo 

depth”
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Ground truth data for ML

43

Airborne LiDAR or shipborne Echosounder

Source Ph. Vision Lab. CUT
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Ground truth data for ML
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ICESat-2 satellite or similar

TCARTA, https://www.tcarta.com/events/geospatial-intelligence-month-april-2020
Dr. Panagiotis Agrafiotis, RSiM, TU Berlin



General depth retrieval flowchart
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General depth retrieval flowchart
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Examples
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Statistical models

Examples
Airborne HS images

(Legleiter et al., 2018)

48

Polynomial regression
Ground truth bathymetric data used: Acoustic Doppler 

Current Profiler (ADCP)
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Statistical models

Examples

K-NN clustering +

Polynomial

regression

(Legleiter et al., 2018)

(Niroumand-Jadidi et al., 2020) 49
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Statistical models

Examples
SPOT6 MS Image

Random Forests
Ground truth bathymetric data used: LiDAR + 

Singlebeam acoustic Profiler

50
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Statistical models

Examples
SPOT6 MS Image

Random Forests
Ground truth bathymetric data used: LiDAR + 

Singlebeam acoustic Profiler
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Statistical models

Examples
Worldview-2 (WV2) images

(Ai et al., 2020)
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CNNs
Ground truth bathymetric data used: 

Airborne LiDAR

Dataset here cannot reach a larger dimension in 
terms of structure and data volume and is not 

suitable for deeper networks.

CNN with only one convolutional layer to 

perform the retrieval work adapted to 
regression tasks

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin



Pros, Issues and Limitations

• No sophisticated geometry processing necessary

• Can handle certain differences in substrate type and water clarity

• Covers large areas (satellites)

• Max depth ~ 1 Secchi

• Requires visibility of bottom features (similar to SfM-MVS, but not 

texture is required here)

• Work better on homogenous seabed

• Requires ground-truth for calibrating coefficients

• Heavily affected by sun glint, high aerosol, turbidity etc.

• Lack of generalization potential due to the daily/seasonal etc. 

variability of spectral values

Spectral-based methods

53

the max depth a disk 30cm is visible
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ML applications

using geometric information

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Spectral-based

• Stereo-based

• Shallow seabed cover maps

54
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Basics of stereo-based models

Solar
radiance

Imagesensor

55

Imagesensor
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Basics of stereo-based models
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Refraction phenomenon

Solar
radiance

ImagesensorImagesensor
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Refraction phenomenon

Snell’s law

The ratio of the sines of the

angles of incidence and

refraction is equivalent to the

ratio of phase velocities in the

two media

57

The law is based on Fermat's 

principle, also known as the 

principle of least time

Fermat's principle states that the 

path taken by a ray between two 

given points is the path that can be 

traversed in the least time.

θ1

θ
2
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Refraction phenomenon

58

Refraction effect is totally 

different for each image 

and each image point!

It depends on
• Depth

• Angle

• Camera position

Solar
radiance

ImagesensorImagesensor
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Refraction phenomenon

59

RMSE of about 30-40% of the 

real depth value!

Example:

A point at 13.5m depth would 

appear at 10m depth!!!

Solar
radiance

ImagesensorImagesensor

Apparent

seabed
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Single View Geometry
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• Violation of the 

Collinearity Equation

• Apparent depths
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Multiple-View Geometry

61

• Violation of the Collinearity 

Equation – different for each 

point -> for each image

• Apparent depths

• Increased noise in the 3D 

point clouds

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin



Refraction correction basics

Since SfM-MVS software is delivering 3D point clouds even when refraction is

ignored, can we skip it?

– NO, it’s physics!

To deliver accurate SfM-MVS results, orthoimages, Digital Elevation Models etc.,

the correction of refraction effects is necessary!

62
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Stereo-based bathymetry

How?

Structure from Motion – Multi-View Stereo + Refraction correction

Refraction correction

Analytical correction

Modification of the collinearity equation. (1950…)

Image-space correction

Re-projection of the original photo to correct the water refraction. (2018…)

Machine learning-based

Depends on machine learning models that learn the underestimation of depths
and predict the correct depth knowing only the apparent one. (2019…)

63
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3D Space Correction

64

Agrafiotis et al., 2029
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Need for synthetic data

Train ML models

• Avoid errors and limitations in image matching 

caused by the visibility restrictions (turbidity, 

caustics, sun glint)

• Avoid errors introduced by the wavy surface

The only unknown is the refraction effect

• 8 datasets – 4 with refraction and 4 without

• Flying height from 150m-2800m

• Various sensors

• Camera constant from 3.6mm to 100.5mm

Z = f (X, Y)

65

Agrafiotis et al., 2021
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Results

65% RMSE reduction compared to the state of the art (LiDAR ground truth data used)

94% RMSE reduction in depth determination between corrected and uncorrected 

data (LiDAR ground truth data used)

Need for synthetic data

Train ML models

• Avoid errors and limitations in image matching 

caused by the visibility restrictions (turbidity, 

caustics, sun glint)

• Avoid errors introduced by the wavy surface

The only unknown is the refraction effect

Z = f (X, Y)

66

Agrafiotis et al., 2021
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Need for synthetic data

Z = f (X, Y)

67

Agrafiotis et al., 2021

Training the ML models 
only on synthetic data
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Differences between the real and corrected 

depths – synthetic data

Z = f (X, Y)

68

Agrafiotis et al., 2021

UAV synth. data: RMSE of 3.34m reduced to 0.09m!

Aircraft-borne synth. data: RMSE of 6.38m reduced to 0.20m!
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Differences between the real and corrected 

depths – real data

Z = f (X, Y)

69

Agrafiotis et al., 2021

Uncorrected data

Corrected/trained 
on real-world data

Corrected/trained 
on synthetic data
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Differences between the real and corrected 

depths – real data

70

Agrafiotis et al., 2021
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Z = f (X, Y)

71
Agrafiotis et al., 2019

3.17m Difference!

Cross sections
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Image Space Correction
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Image Space Correction

73Uncorrected image

Data: Ph. Vision Lab. CUT
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Image Space Correction

74Corrected image

Data: Ph. Vision Lab. CUT
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Deliverable example
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Data: Ph. Vision Lab. CUT
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Pros, Issues and Limitations

• Measured depth through triangulation & Delivers color information

• Delivers high 3D point density in shallow water areas

• Max depth ~ 1 Secchi

• Combined DEMs of emerged and submerged areas

• More accurate compared to spectral-based methods, 
WHEN refraction is corrected

• Refraction correction is necessary

• Passive method

• Geometric
• Requires texture to perform SfM-MVS

Stereo-based methods

76
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Stereo VS Spectral-based

77

Stereo-based

Spectral-based 

(left image)

Spectral-based 

(right image)

Cao et al., 2021
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Stereo VS Spectral-based

78

Stereo-based

Spectral-based 

(left image)

Spectral-based 

(right image)

Cao et al., 2021

+
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Stereo VS Spectral-based

Cross sections of the derived bathymetries
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Cao et al., 2021
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Stereo VS Spectral-based

Wave breaking and turbidity effects

80

Cao et al., 2021

Stereo-based Spectral-based
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Seasonal/Monthly variation

(Sakai et al., 2021)
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MANY different 

spectral 

signatures for 

same pixels

• Limited generali

zation of trained 

models
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Seasonal/Monthly variation
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Figures: Caballero and Stumpf, 2020

Caballero and Stumpf, 2020
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Instant variation
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Caused by

• Change in point 

of view

• Sun glint

• Caustics
• Currents

• Ships and boats

• Clouds

t t+5sec OR different angle

Data: Ph. Vision Lab. CUT
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ML applications

using radiometric information

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps

84
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Shallow seabed cover maps

85

How?

Statistical models: Statistically relate meas. seabed cover and reflectance –

need for ground truth data

• From simple regression to ML (RFs, SVMs) and DL (FCNs etc.)

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin
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Shallow seabed cover maps

Examples
SPOT6 MS Image
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Shallow seabed cover maps

Examples
SPOT6 MS Image

FCN+ResNet101

Weakly supervised semantic

segmentation and multi-label

classification

Dr. Panagiotis Agrafiotis, RSiM, TU Berlin
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